Model

From Peace Corps Wiki

(Difference between revisions)
Jump to: navigation, search
Line 102: Line 102:
   //Initialize to zero, and set equal to one if any new variables are computed
   //Initialize to zero, and set equal to one if any new variables are computed
   ind=0;
   ind=0;
-
   //a*n=e (6,4,2)
+
   //Equation : a*n=e (6,4,2)
 +
  //Unknown  : a (6)
   if (elements[6].value=="" && elements[4].value!="" && elements[2].value!="") {
   if (elements[6].value=="" && elements[4].value!="" && elements[2].value!="") {
   elements[6].value = (1.0*elements[2].value) / (1.0*elements[4].value);
   elements[6].value = (1.0*elements[2].value) / (1.0*elements[4].value);
Line 108: Line 109:
   ind=1;
   ind=1;
   }
   }
 +
  //Equation : a*n=e (6,4,2)
 +
  //Unknown  : n (4)
   if (elements[6].value!="" && elements[4].value=="" && elements[2].value!="") {
   if (elements[6].value!="" && elements[4].value=="" && elements[2].value!="") {
   elements[4].value = (1.0*elements[2].value) / (1.0*elements[6].value);
   elements[4].value = (1.0*elements[2].value) / (1.0*elements[6].value);
Line 113: Line 116:
   ind=1;
   ind=1;
   }
   }
 +
  //Equation : a*n=e (6,4,2)
 +
  //Unknown  : e (2)
   if (elements[6].value!="" && elements[4].value!="" && elements[2].value=="") {
   if (elements[6].value!="" && elements[4].value!="" && elements[2].value=="") {
   elements[2].value = 1.0*elements[6].value * 1.0*elements[4].value;
   elements[2].value = 1.0*elements[6].value * 1.0*elements[4].value;
Line 118: Line 123:
   ind=1;
   ind=1;
   }
   }
-
   //r*p=e (0,5,2)
+
   //Equation : r*p=e (0,5,2)
 +
  //Unknown  : r (0)
   if (elements[0].value=="" && elements[5].value!="" && elements[2].value!="") {
   if (elements[0].value=="" && elements[5].value!="" && elements[2].value!="") {
   elements[0].value = (1.0*elements[2].value) / (1.0*elements[5].value);
   elements[0].value = (1.0*elements[2].value) / (1.0*elements[5].value);
Line 124: Line 130:
   ind=1;
   ind=1;
   }
   }
 +
  //Equation : r*p=e (0,5,2)
 +
  //Unknown  : p (5)
   if (elements[0].value!="" && elements[5].value=="" && elements[2].value!="") {
   if (elements[0].value!="" && elements[5].value=="" && elements[2].value!="") {
   elements[5].value = (1.0*elements[2].value) / (1.0*elements[0].value);
   elements[5].value = (1.0*elements[2].value) / (1.0*elements[0].value);
Line 129: Line 137:
   ind=1;
   ind=1;
   }
   }
 +
  //Equation : r*p=e (0,5,2)
 +
  //Unknown  : e (2)
   if (elements[0].value!="" && elements[5].value!="" && elements[2].value=="") {
   if (elements[0].value!="" && elements[5].value!="" && elements[2].value=="") {
   elements[2].value = 1.0*elements[0].value * 1.0*elements[5].value;
   elements[2].value = 1.0*elements[0].value * 1.0*elements[5].value;
Line 134: Line 144:
   ind=1;
   ind=1;
   }
   }
-
   //c*v=e (3,7,2)
+
   //Equation : c*v=e (3,7,2)
 +
  //Unknown  : c (3)
   if (elements[3].value=="" && elements[7].value!="" && elements[2].value!="") {
   if (elements[3].value=="" && elements[7].value!="" && elements[2].value!="") {
   elements[3].value = (1.0*elements[2].value) / (1.0*elements[7].value);
   elements[3].value = (1.0*elements[2].value) / (1.0*elements[7].value);
Line 140: Line 151:
   ind=1;
   ind=1;
   }
   }
 +
  //Equation : c*v=e (3,7,2)
 +
  //Unknown  : v (7)
   if (elements[3].value!="" && elements[7].value=="" && elements[2].value!="") {
   if (elements[3].value!="" && elements[7].value=="" && elements[2].value!="") {
   elements[7].value = (1.0*elements[2].value) / (1.0*elements[3].value);
   elements[7].value = (1.0*elements[2].value) / (1.0*elements[3].value);
Line 145: Line 158:
   ind=1;
   ind=1;
   }
   }
 +
  //Equation : c*v=e (3,7,2)
 +
  //Unknown  : e (2)
   if (elements[3].value!="" && elements[7].value!="" && elements[2].value=="") {
   if (elements[3].value!="" && elements[7].value!="" && elements[2].value=="") {
   elements[2].value = 1.0*elements[3].value * 1.0*elements[7].value;
   elements[2].value = 1.0*elements[3].value * 1.0*elements[7].value;
Line 150: Line 165:
   ind=1;
   ind=1;
   }
   }
-
   //n=r+c (4,0,3)
+
   //Equation : n=r+c (4,0,3)
 +
  //Unknown  : n (4)
   if (elements[4].value=="" && elements[0].value!="" && elements[3].value!="") {
   if (elements[4].value=="" && elements[0].value!="" && elements[3].value!="") {
   elements[4].value = (1.0*elements[0].value) + (1.0*elements[3].value);
   elements[4].value = (1.0*elements[0].value) + (1.0*elements[3].value);
Line 156: Line 172:
   ind=1;
   ind=1;
   }
   }
 +
  //Equation : n=r+c (4,0,3)
 +
  //Unknown  : r (0)
   if (elements[4].value!="" && elements[0].value=="" && elements[3].value!="") {
   if (elements[4].value!="" && elements[0].value=="" && elements[3].value!="") {
   elements[0].value = (1.0*elements[4].value) - (1.0*elements[3].value);
   elements[0].value = (1.0*elements[4].value) - (1.0*elements[3].value);
Line 161: Line 179:
   ind=1;
   ind=1;
   }
   }
 +
  //Equation : n=r+c (4,0,3)
 +
  //Unknown  : c (3)
   if (elements[4].value!="" && elements[0].value!="" && elements[3].value=="") {
   if (elements[4].value!="" && elements[0].value!="" && elements[3].value=="") {
   elements[3].value = (1.0*elements[4].value) - (1.0*elements[0].value);
   elements[3].value = (1.0*elements[4].value) - (1.0*elements[0].value);
Line 166: Line 186:
   ind=1;
   ind=1;
   }
   }
-
   //r=s+e (0,1,2)
+
   //Equation : r=s+e (0,1,2)
 +
  //Unknown  : r (0)
   if (elements[0].value=="" && elements[1].value!="" && elements[2].value!="") {
   if (elements[0].value=="" && elements[1].value!="" && elements[2].value!="") {
   elements[0].value = (1.0*elements[1].value) + (1.0*elements[2].value);
   elements[0].value = (1.0*elements[1].value) + (1.0*elements[2].value);
Line 172: Line 193:
   ind=1;
   ind=1;
   }
   }
 +
  //Equation : r=s+e (0,1,2)
 +
  //Unknown  : s (1)
   if (elements[0].value!="" && elements[1].value=="" && elements[2].value!="") {
   if (elements[0].value!="" && elements[1].value=="" && elements[2].value!="") {
   elements[1].value = (1.0*elements[0].value) - (1.0*elements[2].value);
   elements[1].value = (1.0*elements[0].value) - (1.0*elements[2].value);
Line 177: Line 200:
   ind=1;
   ind=1;
   }
   }
 +
  //Equation : r=s+e (0,1,2)
 +
  //Unknown  : e (2)
   if (elements[0].value!="" && elements[1].value!="" && elements[2].value=="") {
   if (elements[0].value!="" && elements[1].value!="" && elements[2].value=="") {
   elements[2].value = (1.0*elements[0].value) - (1.0*elements[1].value);
   elements[2].value = (1.0*elements[0].value) - (1.0*elements[1].value);
Line 182: Line 207:
   ind=1;
   ind=1;
   }
   }
-
   //26a=9ap+8p  (a=6, p=5)
+
   //Equation : 26a=9ap+8p  (a 6, p 5)
 +
  //Unknown  : a (6)
   if (elements[6].value=="" && elements[5].value!="") {
   if (elements[6].value=="" && elements[5].value!="") {
   elements[6].value = (8.0*elements[5].value) / (26.0 - 9.0*elements[5].value);
   elements[6].value = (8.0*elements[5].value) / (26.0 - 9.0*elements[5].value);
Line 188: Line 214:
   ind=1;
   ind=1;
   }
   }
 +
  //Equation : 26a=9ap+8p  (a 6, p 5)
 +
  //Unknown  : p (5)
   if (elements[6].value!="" && elements[5].value=="") {
   if (elements[6].value!="" && elements[5].value=="") {
   elements[5].value = (26.0*elements[6].value) / (8.0 + 9.0*elements[6].value);
   elements[5].value = (26.0*elements[6].value) / (8.0 + 9.0*elements[6].value);
Line 193: Line 221:
   ind=1;
   ind=1;
   }
   }
-
   //2L+27p=54 (8,5)
+
   //Equation : 2L+27p=54 (8,5)
 +
  //Unknown  : L (8)
   if (elements[8].value=="" && elements[5].value!="") {
   if (elements[8].value=="" && elements[5].value!="") {
   elements[8].value = (54.0 - 27.0*elements[5].value) / 2.0;
   elements[8].value = (54.0 - 27.0*elements[5].value) / 2.0;
Line 199: Line 228:
   ind=1;
   ind=1;
   }
   }
 +
  //Equation : 2L+27p=54 (8,5)
 +
  //Unknown  : p (5)
   if (elements[8].value!="" && elements[5].value=="") {
   if (elements[8].value!="" && elements[5].value=="") {
   elements[5].value = (54.0 - 2.0*elements[8].value) / 27.0;
   elements[5].value = (54.0 - 2.0*elements[8].value) / 27.0;
   elements[5].value=Math.round(100*elements[5].value)/100;
   elements[5].value=Math.round(100*elements[5].value)/100;
 +
  ind=1;
 +
  }
 +
  //Equation : rp=cv (given r 0 , c 3)
 +
  //Unknown  : p (5)
 +
  if (elements[0].value!="" && elements[3].value!="" && elements[5].value=="") {
 +
  elements[5].value = 2*(9.0*elements[0].value - 4.0*elements[3].value) / (9.0*elements[0].value);
 +
  elements[5].value=Math.round(100*elements[5].value)/100;
 +
  ind=1;
 +
  }
 +
  //Equation : rp=cv (given p 5 , c 3)
 +
  //Unknown  : r (0)
 +
  if (elements[0].value=="" && elements[3].value!="" && elements[5].value!="") {
 +
  elements[0].value = (8.0*elements[3].value) / (9.0 * (2 - 1.0*elements[5].value));
 +
  elements[0].value=Math.round(elements[0].value);
   ind=1;
   ind=1;
   }
   }

Revision as of 22:39, 19 June 2010

<addhtml> Given any two quantities the program will estimate the rest:

Number of Volunteers in the past year...
&nbsp&nbsp&nbsp&nbsp&nbsp Entered Service
&nbsp&nbsp&nbsp&nbsp&nbsp Finished Service (COS)
&nbsp&nbsp&nbsp&nbsp&nbsp Early Terminated (ET)
&nbsp&nbsp&nbsp&nbsp&nbsp Currently Serving
&nbsp&nbsp&nbsp&nbsp&nbsp TOTAL served any part of year
Rate of Early Termination: (as decimal)
&nbsp&nbsp&nbsp&nbsp&nbsp Cohort Method ("Out of 100")
&nbsp&nbsp&nbsp&nbsp&nbsp Annual Method
&nbsp&nbsp&nbsp&nbsp&nbsp Volunteer-Year Method
Statistics:
&nbsp&nbsp&nbsp&nbsp&nbsp Average length of service (months)



Definitions:
a: Annual ET rate (current method used by Peace Corps) The number of PCVs/Ts who separated from the Peace Corps during the fiscal year divided by the total number of trainees and volunteers who served at any time during the fiscal year. (Ref.) [FY2009 Actual Value: 10.0% (Ref.)]
c: The average number of currently serving volunteers and trainees at any moment in time. [FY2009 Estimated Value: 7,596]
e: The number of volunteers and trainees that Early Terminated within the year under study. [FY2009 Actual value: 1,155 (Ref.)]
n: The number of volunteers and trainees that served any portion of the year under study [FY2009 Actual Value: 11,549 (Ref.)]
p: Cohort ET rate ("Out of 100") This method addresses the question: "If X number of people enter Peace Corps service during a given time period, how many do not complete their service?" Equivalent to the probability of a randomly selected volunteer Early Terminating sometime within their service. [FY2009 Estimated Value: 29.2% (Ref.)]
r: Number of volunteers who entered service in the year under study [FY2009 Estimated Value: 3,953]
v: V-Year Method of ET Rate. The number of ET's by an average volunteer during one year of service. Since most volunteers successfully complete their service, which is longer than one year, this number would be a "fraction of an ET". If the V-Year ET Rate was 0.20 (per year) we would expect about 2 volunteers out of 10 to ET per year, or about 1 volunteer out of 10 in a six-month period. (Ref.) [FY2009 Estimated Value: 0.152]
L: Average length of service among all volunteers (in months) [FY2009 Estimated Value: 22.1 months]
</addhtml>

Personal tools
Namespaces
Variants
Actions
Tell Your Friends
Navigation
Peace Corps News
Timelines
Country Information
Groups
Help
About
Toolbox